Excitons, encountered in technologies like solar cells and TVs, are quasiparticles formed by an electron and a positively charged "hole," moving together in a semiconductor. Created when an electron is excited to a higher energy state, excitons transfer energy without carrying a net charge. While...
Researchers at the University of Houston's Texas Center for Superconductivity have achieved another first in their quest toward ambient-pressure high-temperature superconductivity, bringing us one step closer to finding superconductors that work in everyday conditions—and potentially unlocking a new...
Exotic superconducting states could exist in a wider range of materials than previously thought, according to a theoretical study by two RIKEN researchers published in Physical Review B....
Antimatter is a fascinating kind of matter made up of antiparticles, which have a mass equivalent to that of their normal matter counterparts, yet they exhibit an opposite charge and distinct quantum properties....
Optical fibers are fundamental components in modern science and technology due to their inherent advantages, providing an efficient and secure medium for applications such as internet communication and big data transmission. Compared with single-mode fibers (SMFs), multimode fibers (MMFs) can...
The phase and the group velocity of light propagating in conventional optical media cannot exceed the speed of light in vacuum. However, in so-called epsilon-near-zero (ENZ) materials, light exhibits an infinite phase velocity and a vanishing group velocity for a particular color (frequency)....
Electric sparks are used for welding, powering electronics, killing germs or for igniting the fuel in some car engines. Despite their usefulness, they are hard to control in open space—they split into chaotic branches that tend to go toward the closest metallic objects....
Researchers at Tohoku University have achieved a significant advancement in opto-magnetic technology, observing an opto-magnetic torque approximately five times more efficient than in conventional magnets. This breakthrough, led by Koki Nukui, Assistant Professor Satoshi Iihama, and Professor...
How does cold milk disperse when it is dripped into hot coffee? Even the fastest supercomputers are unable to perform the necessary calculations with high precision because the underlying quantum physical processes are extremely complex....
Researchers have designed a single-photon time-of-flight LiDAR system that can acquire a high-resolution 3D image of an object or scene up to 1 kilometer away. The new system could help enhance security, monitoring, and remote sensing by enabling detailed imaging even in challenging environmental...
Pages