X-ray technology plays a vital role in medicine and scientific research, providing non-invasive medical imaging and insight into materials. Recent advancements in X-ray technology enable brighter, more intense beams and imaging of increasingly intricate systems in real-world conditions, like the...
In research that could jumpstart interest into an enigmatic class of materials known as quasicrystals, MIT scientists and colleagues have discovered a relatively simple, flexible way to create new atomically thin versions that can be tuned for important phenomena. In work reported in Nature they...
An international team of researchers from the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) in Hamburg and ETH Zurich has now demonstrated that it is possible to probe electron dynamics in liquids using intense laser fields and to retrieve the electron mean free path—the...
Researchers at the Department of Energy's SLAC National Accelerator Laboratory. Stanford University, and Denmark Technical University have designed a cutting-edge X-ray microscope capable of directly observing sound waves at the tiniest of scales—the lattice level within a crystal. These findings,...
In nonlinear dynamic systems, a change in one place can trigger an outsized change elsewhere. The climate, the workings of the human brain, and the behavior of the electric grid are all examples—and all change dramatically over time. Because of their inherent unpredictability, dynamic systems like...
Researchers led by Chang Liu of PPPL have unveiled a promising approach to mitigating damaging runaway electrons created by disruptions in tokamak fusion devices. Key to the approach was harnessing a unique type of plasma wave that bears the name of astrophysicist Hannes Alfvén, a 1970 Nobel...
Light can excite electron and hole pairs inside semiconducting materials. If the attraction between a negatively charged electron and a positively charged hole (the antiparticle of electron in solid state physics) is strong, they stay bound together, forming states known as excitons. In these...
Scientists at St Andrews are leading a significant breakthrough in a decades-long challenge to develop compact laser technology....
A team led by scientists and engineers from the University of Wisconsin-Madison, the University of Southern California and Washington University in St. Louis, has created a unique, record-setting material that can bend one infrared ray of light in two directions....
The results of the Chi-Nu physics experiment at Los Alamos National Laboratory have contributed essential, never-before-observed data for enhancing nuclear security applications, understanding criticality safety and designing fast-neutron energy reactors. The Chi-Nu project, a years-long experiment...
Pages