What if you could hide an image in plain sight—so well that even the most advanced cameras couldn't detect it? Imagine encoding visual information using the properties of quantum optics, rendering it invisible to normal imaging technology....
One of the most surprising predictions of physics is entanglement, a phenomenon where objects can be some distance apart but still linked together. The best-known examples of entanglement involve tiny chunks of light (photons), and low energies....
By cleverly applying a computational technique, scientists have made a breakthrough in understanding the "pseudogap," a long-standing puzzle in quantum physics with close ties to superconductivity. The discovery, presented in Science, will help scientists in their quest for room-temperature...
The topological quantum computer still exists only in theory but, if possible, would be the most stable and powerful computing machine in the world. However, it requires a special type of qubit (quantum bit) that has yet to be realized and manipulated....
Quantum entanglement is a fascinating feature of quantum physics—the theory of the very small. If two particles are quantum-entangled, the state of one particle is tied to that of the other, no matter how far apart the particles are. This mind-bending phenomenon, which has no analog in classical...
Researchers have demonstrated a new optical atomic clock that uses a single laser and doesn't require cryogenic temperatures. By greatly reducing the size and complexity of atomic clocks without sacrificing accuracy and stability, this advance could lead to high-performance atomic clocks that are...
Scientists from the U.S. Department of Energy's (DOE) Brookhaven National Laboratory have shown that a type of qubit whose architecture is more amenable to mass production can perform comparably to qubits currently dominating the field. With a series of mathematical analyses, the scientists have...
A breakthrough in quantum technology research could help realize a new generation of precise quantum sensors that can operate at room temperature....
Gravity is no longer a mystery to physicists—at least when it comes to large distances. Thanks to science, we can calculate the orbits of planets, predict tides, and send rockets into space with precision. However, the theoretical description of gravity reaches its limits at the level of the...
Scientists use atomic clocks to measure the "second," the smallest standard unit of time, with great precision. These clocks use natural oscillations of electrons in atoms, similar to how pendulums work in old grandfather clocks. The quest for an even more precise timekeeper led to the discovery of...
Pages