A combination of mRNA and a new lipid nanoparticle could help heal damaged lungs, according to new research from the Perelman School of Medicine at the University of Pennsylvania. Viruses, physical trauma, or other problems can have a serious impact on the lungs, and when the damage is in the lower...
A research team at POSTECH has developed a method for synthesizing perovskite nanocrystals (PNCs), a next-generation semiconductor material, in a more uniform and efficient manner. This study is expected to serve as a key breakthrough in overcoming the complexities of conventional synthesis methods...
Antennas receive and transmit electromagnetic waves, delivering information to our radios, televisions, cellphones and more. Researchers in the McKelvey School of Engineering at Washington University in St. Louis imagines a future where antennas reshape even more applications....
Researchers, including those from the University of Tokyo, developed Deep Nanometry, an analytical technique combining advanced optical equipment with a noise removal algorithm based on unsupervised deep learning....
In molecular shuttles, a ring molecule is threaded onto a linear molecular strand and can move between two portions of the strand, called stations, in response to external stimuli. Chemical stimuli, light or mechanical forces determine the time the shuttle spends at each station while it hops back...
Three RIKEN physicists have discovered how tiny tubes of carbon spit out light that is more energetic than the light shone on them. This finding could help to exploit the process in applications such as solar power and biological imaging....
A collaborative team of researchers from the Max Planck Institute for Structure and Dynamics of Matter (MPSD), Nanjing University, Songshan Lake Materials Laboratory (SLAB), and international partners has introduced a new method to regulate exotic electronic states in two-dimensional materials....
Researchers have developed a freely available droplet microfluidic component library, which promises to transform the way microfluidic devices are created. This innovation, based on low-cost rapid prototyping and electrode integration, makes it possible to fabricate microfluidic devices for under...
Researchers have found that a two-dimensional carbon material is tougher than graphene and resists cracking—even the strongest crack under pressure, a problem materials scientists have long been grappling with. For instance, carbon-derived materials like graphene are among the strongest on Earth,...
Methanol, important for the manufacture of many everyday goods and for its green energy potential, may soon be produced faster and more efficiently thanks to a collaboration that included two Oregon State University researchers....
Pages